Unit: mm TOSHIBA Field Effect Transistor Silicon P/N-Channel MOS Type (P-Channel N-Channel Ultra-High-Speed U-MOSIII) # **TPC8406-H** High Efficiency DC ∕ DC Converter Applications Notebook PC Applications Portable Equipment Applications **CCFL Inverter Applications** • Small footprint due to a small and thin package High speed switching • Low drain-source ON-resistance: P-Channel RDS (ON) = $24 \text{ m}\Omega$ (typ.) N-Channel RDS (ON) = $22 \text{ m}\Omega$ (typ.) • Small gate charge: P-Channel $Q_{SW} = 9.7 \text{ nC (typ.)}$ N-Channel Qsw = 3.5 nC (typ.) • High forward transfer admittance: P-Channel $|Y_{fs}| = 13 \text{ S (typ.)}$ N-Channel $|Y_{fs}| = 14 \text{ S (typ.)}$ • Low leakage current: P-Channel IDSS = $-10 \mu A (VDS = -40 V)$ N-Channel IDSS = $10 \mu A (VDS = 40 V)$ • Enhancement mode : P-Channel V_{th} = -0.8 to -2.0 V (V_{DS} = -10 V, I_{D} = -1 mA) : N-Channel $V_{th} = 1.1 \text{ to } 2.3 \text{ V (V}_{DS} = 10 \text{ V, I}_{D} = 1 \text{ mA)}$ ### **Absolute Maximum Ratings (Ta = 25°C)** | Characteristic | | Symbol | Rat | Unit | | | |---|---|-------------------|-----------------|-----------------|----|--| | | Symbol | P-Channel | N-Channel | Offic | | | | Drain-source v | Drain-source voltage | | | 40 | V | | | Drain-gate vol | tage (R _{GS} = 20 kΩ) | V_{DGR} | -40 | 40 | V | | | Gate-source v | oltage | V _{GSS} | ±20 | ±20 | V | | | Drain current | DC (Note 1) | ΙD | -6.5 | 6.5 | Α | | | Diaili Cuileil | Pulse (Note 1) | I _{DP} | -26 | 26 | Α | | | Drain power dissipation | Single-device operation (Note 3a) | P _{D(1)} | 1.5 | 1.5 | W | | | (t = 10s)
(Note 2a) | Single-device value at dual operation (Note 3b) | P _{D(2)} | 1.1 | 1.1 | | | | Drain power dissipation | Single-device operation (Note 3a) | P _{D(1)} | 0.75 | 0.75 | | | | (t = 10s)
(Note 2b) | Single-device value at dual operation (Note 3b) | P _{D(2)} | 0.45 | 0.45 | | | | Single-pulse avalanche energy | | Eas | 19
(Note 4a) | 19
(Note 4b) | mJ | | | Avalanche cur | rent | I _{AR} | -6.5 | 6.5 | Α | | | Repetitive avalanche energy
Single-device value at operation
(Note 2a, 3b, 5) | | E _{AR} | 0.08 | | mJ | | | Channel temp | Channel temperature | | 150 | | °C | | | Storage temper | Storage temperature range | | | -55 to 150 | | | 0.595TYP 1.27 0.4±0.1 0.25 @ 0.595TYP 1.27 0.500.2 0.5 1 SOURCE 4 GATE 2 GATE 5, 6 DRAIN 3 SOURCE 7, 8 DRAIN TOSHIBA 2-6J1E Weight: 0.085 g (typ.) JEITA ### **Circuit Configuration** Note: For Notes 1 to 4, refer to the next page. Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/Derating Concept and Methods) and individual reliability data (i.e. reliability test report and estimated failure rate, etc). This transistor is an electrostatic-sensitive device. Handle with care. #### **Thermal Characteristics** | Characteristic | Symbol | Max | Unit | | | |--|---|----------------------------|------|------|--| | Thermal resistance, channel to ambient (t = 10s) (Note 2a) | Single-device operation (Note 3a) | R _{th (ch-a) (1)} | 83.3 | °C/W | | | | Single-device value at dual operation (Note 3b) | R _{th (ch-a) (2)} | 114 | | | | Thermal registance, channel to ambient | Single-device operation (Note 2a) | R _{th (ch-a) (1)} | 167 | C/VV | | | Thermal resistance, channel to ambient (t = 10s) (Note 2b) | Single-device value at dual operation (Note 2b) | R _{th (ch-a) (2)} | 278 | | | ### Marking Note 1: The channel temperature should not exceed 150°C during use. #### Note 2: - a) Device mounted on a glass-epoxy board (a) - b) Device mounted on a glass-epoxy board (b) #### Note 3: - a) The power dissipation and thermal resistance values are shown for a single device (During single-device operation, power is applied to one device only.). - b) The power dissipation and thermal resistance values are shown for a single device (During dual operation, power is evenly applied to both devices.). #### Note 4: a) $$V_{DD} = -24 \text{ V}$$, $T_{ch} = 25 ^{\circ}\text{C}$ (Initial), $L = 0.5 \text{ mH}$, $R_G = 25 \Omega$, $I_{AR} = -6.5 \text{ A}$ b) $$V_{DD} = 24 \text{ V}$$, $T_{ch} = 25^{\circ}\text{C}$ (Initial), $L = 0.5 \text{ mH}$, $R_G = 25 \Omega$, $I_{AR} = 6.5 \text{ A}$ Note 5: Repetitive rating: pulse width limited by maximum channel temperature Note 6: • on the lower left of the marking indicates Pin 1. * Weekly code: (Three digits) 2006-11-13 # P-Channel Electrical Characteristics (Ta = 25°C) | Ch | aracteristic | Symbol | Test Condition | Min | Тур. | Max | Unit | |---|--------------------|-----------------------|--|------|------|------|------| | Gate leakage current | | I _{GSS} | $V_{GS} = \pm 16 \text{ V}, V_{DS} = 0 \text{ V}$ | _ | _ | ±10 | μА | | Drain cutoff curre | ent | I _{DSS} | $V_{DS} = -40 \text{ V}, V_{GS} = 0 \text{ V}$ | | _ | -10 | μА | | Drain course bro | akdown voltago | V (BR) DSS | $I_D = -10 \text{ mA}, V_{GS} = 0 \text{ V}$ | -40 | _ | _ | V | | Drain-source breakdown voltage | | V _{(BR) DSX} | $I_D = -10 \text{ mA}, V_{GS} = 20 \text{ V}$ | -20 | _ | _ | V | | Gate threshold ve | oltage | V _{th} | $V_{DS} = -10 \text{ V}, I_D = -1 \text{ mA}$ | -0.8 | _ | -2.0 | ٧ | | Drain-source ON | raciatanaa | Dec (com | $V_{GS} = -4.5 \text{ V}, I_D = -3.3 \text{ A}$ | _ | 29 | 37 | mO | | Diain-source ON | -resistance | R _{DS} (ON) | $V_{GS} = -10 \text{ V}, I_D = -3.3 \text{ A}$ | _ | 24 | 30 | mΩ | | Forward transfer | admittance | Y _{fs} | $V_{DS} = -10 \text{ V}, I_D = -3.3 \text{ A}$ | 6.5 | 13 | _ | S | | Input capacitance | е | C _{iss} | | _ | 1190 | _ | pF | | Reverse transfer | capacitance | C _{rss} | $V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$ | _ | 170 | _ | | | Output capacitance | | C _{oss} | - | | 250 | _ | | | | Rise time | t _r | V_{GS} $\begin{array}{c} 0 \text{ V} \\ -10 \text{ V} \\ \hline \\ V_{DD} \simeq -20 \text{ V} \\ \end{array}$ $\begin{array}{c} I_{D} = -3.3 \text{ A} \\ \text{O V}_{OUT} \\ \text{RL} = \\ 6.1 \Omega \\ \end{array}$ | _ | 5 | _ | | | Outitals a time | Turn-on time | t _{on} | | _ | 12 | _ | | | Switching time | Fall time | t _f | | _ | 12 | _ | ns | | | Turn-off time | t _{off} | Duty ≦ 1%, t _w = 10 μs | _ | 43 | _ | | | Total gate charge (gate-source plus gate-drain) | | 0 | $V_{DD} \simeq -32 \text{ V}, V_{GS} = -10 \text{V}$
$I_D = -6.5 \text{ A}$ | _ | 27 | _ | | | | | Qg | $V_{DD} \simeq -32 \text{ V}, V_{GS} = -5 \text{ V}$
$I_D = -6.5 \text{ A}$ | | 15 | _ | nC | | Gate-source charge 1 | | Q _{gs1} | $V_{DD} \simeq -32 \text{ V}, V_{GS} = -10 \text{ V}$ $I_{D} = -6.5 \text{ A}$ | _ | 3.2 | _ | | | Gate-drain ("Miller") charge | | Q _{gd} | | _ | 8.1 | _ | | | Gate switch char | Gate switch charge | |] - | _ | 9.7 | _ | | # Source-Drain Ratings and Characteristics (Ta = 25°C) | Characteristic | | Symbol | Test Condition | Min | Тур. | Max | Unit | |-------------------------|----------------|------------------|---|-----|------|-----|------| | Drain reverse current | Pulse (Note 1) | I _{DRP} | _ | _ | _ | -26 | Α | | Forward voltage (diode) | | V _{DSF} | $I_{DR} = -6.5 \text{ A}, V_{GS} = 0 \text{ V}$ | | | 1.2 | V | 3 2006-11-13 # N-channel Electrical Characteristics (Ta = 25°C) | Ch | aracteristic | Symbol | Test Condition | Min | Тур. | Max | Unit | |--|------------------------------|-----------------------|---|-----|------|-----|------| | Gate leakage cur | Gate leakage current | | $V_{GS} = \pm 16 \text{ V}, V_{DS} = 0 \text{ V}$ | _ | _ | ±10 | μА | | Drain cutoff curre | nt | I _{DSS} | V _{DS} = 40 V, V _{GS} = 0 V | _ | _ | 10 | μА | | Drain-source bre | akdown voltage | V (BR) DSS | $I_D = 10$ mA, $V_{GS} = 0$ V | 40 | _ | _ | V | | Diam-source bie | akdown voltage | V _{(BR) DSX} | $I_D = 10 \text{ mA}, V_{GS} = -20 \text{ V}$ | 25 | | _ | | | Gate threshold vo | oltage | V _{th} | $V_{DS} = 10 \text{ V}, I_D = 1 \text{ mA}$ | 1.1 | _ | 2.3 | > | | Drain-source ON | registance | Pro (ON) | $V_{GS} = 4.5 \text{ V}, I_D = 3.3 \text{ A}$ | | 27 | 35 | m() | | Diain-source ON | -resistance | R _{DS} (ON) | $V_{GS} = 10 \text{ V}, I_D = 3.3 \text{ A}$ | _ | 22 | 27 | mΩ | | Forward transfer | admittance | Y _{fs} | $V_{DS} = 10 \text{ V}, I_D = 3.3 \text{ A}$ | 7 | 14 | _ | S | | Input capacitance |) | C _{iss} | | _ | 650 | _ | | | Reverse transfer | Reverse transfer capacitance | | V _{DS} = 10 V, V _{GS} = 0 V, f = 1 MHz | _ | 55 | _ | pF | | Output capacitan | ce | Coss | | _ | 240 | _ | | | | Rise time | t _r | V_{GS} 10 V $I_{D} = 3.3 \text{ A}$ O | _ | 3 | _ | | | Switching time | Turn-on time | t _{on} | | _ | 9 | _ | 20 | | Switching time | Fall time | t _f | | _ | 2 | _ | ns | | | Turn-off time | t _{off} | Duty ≦ 1%, t _W = 10 μs | _ | 18 | _ | | | Total gate charge
(gate-source plus gate-drain) | | Qg | $V_{DD} \simeq 32 \text{ V}, V_{GS} = 10 \text{V}, I_D = 6.5 \text{A}$ | _ | 11 | _ | | | | | | $V_{DD} \simeq 32 \text{ V}, V_{GS} = 5 \text{ V}, I_D = 6.5 \text{A}$ | _ | 6.2 | _ | | | Gate-source charge 1 | | Q _{gs1} | | _ | 2.1 | _ | nC | | Gate-drain ("Mille | Gate-drain ("Miller") charge | | $V_{DD} \simeq 32 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 6.5 \text{A}$ | _ | 2.7 | _ | | | Gate switch char | ge | Q _{SW} | | _ | 3.5 | _ | | # Source-Drain Ratings and Characteristics (Ta = 25°C) | Characteristic | | Symbol | Test Condition | Min | Тур. | Max | Unit | |-------------------------|----------------|------------------|--|-----|------|------|------| | Drain reverse current | Pulse (Note 1) | I _{DRP} | _ | _ | _ | 26 | Α | | Forward voltage (diode) | | V_{DSF} | $I_{DR} = 6.5 \text{ A}, V_{GS} = 0 \text{ V}$ | | | -1.2 | V | ### **P-Channel** 5 ### **P-Channel** ### **P-Channel** ### **N-Channel** ### **N-Channel** ### **N-Channel** ### **RESTRICTIONS ON PRODUCT USE** 060116EAA - The information contained herein is subject to change without notice. 021023_D - TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. - In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023_A - The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. 021023_B - The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q - The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. 021023 C